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Part 1: Two-sided Matching Markets 

2



Matching markets

• Talent cultivation (school admissions, student internships)

• Task allocation (crowdsourcing assignments, domestic services)

• Resource distribution (housing allocation, organ donation allocation)
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Workers Employers

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4

Matching market has two sides

𝐴5
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𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

Both sides have preferences over the other side
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𝐵1

𝐵2

𝐵3

𝐵4

Worker side

Based on 
payment or 
prior familiarity 
of the task

: 𝐵2 > 𝐵3 > 𝐵1 > 𝐵4

: 𝐵1 > 𝐵2 > 𝐵3 > 𝐵4

: 𝐵3 > 𝐵1 > 𝐵2 > 𝐵4

: 𝐵1 > 𝐵2 > 𝐵3 > 𝐵4

: 𝐵1 > 𝐵2 > 𝐵3 > 𝐵4



𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

Both sides have preferences over the other side
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𝐵1

𝐵2

𝐵3

𝐵4

: 𝐴1 > 𝐴2 > 𝐴3 > 𝐴4 > 𝐴5

: 𝐴2 > 𝐴1 > 𝐴4 > 𝐴3 > 𝐴5

: 𝐴3 > 𝐴1 > 𝐴2 > 𝐴5 > 𝐴4

: 𝐴4 > 𝐴5 > 𝐴1 > 𝐴2 > 𝐴3

Employer side

Based on the 
skill levels of 
workers



A case study: Medical interns [Roth (1984)]  

• Hospital side
• Internship has relatively low cost

• Student side
• closely engage with clinical medicine through internships 

• Historical practice
• Medical schools first publish students’ grade ranking

• Then hospitals start signing internship agreements with students

• How to match? 
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Medical interns (cont.)

• Bad case
• Student 𝑠1

• Receives offer from ℎ2 but knows he is on the waiting list of ℎ1
• Wishes to wait for ℎ1
• If 𝑠1 is forced to accept ℎ2 and then ℎ1 sends an invitation?

• Hospital ℎ2
• Rejected by 𝑠1 at the last moment

• Students on the waiting list have already accepted other offers

• Important to guarantee stability

ℎ1

ℎ2

𝑠1

𝑠2
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ℎ1 > ℎ2



Participants have no 
incentive to abandon their 
current partner, 

i.e., 

no blocking pair such that 
they both preferred to be 
matched with each other 
than their current partner

Stable matching

Alvin E. Roth and Lloyd S. Shapley jointly won the Nobel Prize in 2012 for their contributions to stable matching theory.

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2

𝐵1 > 𝐵2 > 𝐵3
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Blocking pair 



May be more than one stable matchings

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

10𝑚1 = 𝐴1, 𝐵1 , 𝐴2, 𝐵2 , 𝐴3, 𝐵3 𝑚2 = 𝐴1, 𝐵2 , 𝐴2, 𝐵1 , 𝐴3, 𝐵3

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2



Each agent on A-side is matched 
with the most preferred partner 
among all stable matchings

𝑚1 = 𝐴1, 𝐵1 , 𝐴2, 𝐵2 , 𝐴3, 𝐵3

A-side optimal stable matching1

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

1The existence is proved by Gale and Shapley (1962). 
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𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2



A-side pessimal stable matching

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2
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Each agent on A-side is matched 
with the least preferred partner 
among all stable matchings

𝑚2 = 𝐴1, 𝐵2 , 𝐴2, 𝐵1 , 𝐴3, 𝐵3



𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

How to find a stable matching?
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𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2

Gale-Shapley (GS) algorithm 
[Gale and Shapley (1962)]

Agents on one side independently 
propose to agents on the other side 
according to their preference 
ranking until no rejection happens

No rejection happens! 



Gale-Shapley (GS) algorithm: Case 2

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐴1 > 𝐴2 > 𝐴3

𝐴1 > 𝐴2 > 𝐴3

𝐴1 > 𝐴2 > 𝐴3

𝐵1 > 𝐵2 > 𝐵3

𝐵1 > 𝐵2 > 𝐵3

𝐵1 > 𝐵2 > 𝐵3

14Step 1 Step 2 Step 3



GS properties: Stability

• The GS algorithm returns the stable matching

• Proof sketch

• Suppose there exists blocking pair (𝐴𝑖 , 𝐵𝑗) such that
• 𝐴𝑖 prefers 𝐵𝑗 than its current partner 𝑚𝑖

• 𝐵𝑗 prefers 𝐴𝑖 than its current partner 𝑚𝑗

• For 𝐴𝑖, it first proposes to 𝐵𝑗, but is rejected, then proposes to 𝑚𝑖

• This means that 𝐵𝑗 must prefers 𝑚𝑗 than 𝐴𝑖
• Contradiction! 
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𝑚𝑗

𝑚𝑖

𝐵𝑗

𝐵𝑗 > 𝑚𝑖

𝐴𝑖

𝐴𝑖 > 𝑚𝑗



GS properties: Time complexity

• Each B-side agent can reject each A-side agent at most once

• At least one rejection happens at each step before stop

• 𝑁 = # {proposing-side agents}, 𝐾 = # {acceptance-side agents}

• ⟹ GS will stop in at most 𝑁𝐾 steps

16
The time complexity can be improved as 𝑁2 if 𝑁 ≤ 𝐾 [Kong, Wang and Li, NeurIPS 2024]



GS properties: Optimality

• Who proposes matters
• Each proposing-side agent is happiest, matched with the most preferred partner 

among all stable matchings 

• Each acceptance-side agent is only matched with the least preferred partner 
among all stable matchings

• A-side optimal stable matching = B-side pessimal stable matching
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𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2

A-side optimal
∥

B-side pessimal 

B-side optimal
∥

A-side pessimal 

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐵2 > 𝐵1 > 𝐵3

𝐵3 > 𝐵1 > 𝐵2

𝐵1 > 𝐵2 > 𝐵3 𝐴2 > 𝐴3 > 𝐴1

𝐴1 > 𝐴2 > 𝐴3

𝐴3 > 𝐴1 > 𝐴2



Summary of Part 1: Two-sided matching markets

• Introduction to matching markets

• Stable matching

• Gale-Shapley algorithm: Procedure and properties
• Stability

• Time complexity

• Optimality
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Can learn them from 
iterative interactions !

But agents usually have unknown 
preferences in practice

19



Part 2: Multi-armed Bandits
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What are bandits? [Lattimore and Szepesvári, 2020]

To accumulate as many rewards, which arm would you choose next?

Exploitation V.S. Exploration
21

Time 1 2 3 4 5 6 7 8 9 10

Arm 1 $1 $0 $1 $1 $0

Arm 2 $1 $0



Interactive machine learning 

22

Candidate actions

Learning agent

Feedback

Environment

(2) Choose action

(3) Generate feedback
(4) Receive feedback

(5) Improve policy

(1) Faced with

Provide insights for agents in matching markets to learn their 
unknown preferences through iterative interactions



Applications

23

Recommendation systems
[Li et al., 2010]

SAT solvers
[Liang et al., 2016]

Advertisement placement
[Yu et al., 2016]

Key part of reinforcement learning
[Hu et al., 2018]

Monte-carlo Tree Search (MCTS) in AlphaGo
[Kocsis and Szepesvári, 2006; Silver et al., 2016]

Public health: COVID-19 border testing in Greece
[Bastani et al., 2021]



Multi-armed bandits (MAB)

• A player and 𝐾 arms

• Each arm 𝑎𝑗 has an unknown reward distribution 𝑃𝑗 with unknown 
mean 𝜇𝑗

• In each round 𝑡 = 1,2, … :
• The agent selects an arm 𝐴𝑡 ∈ {1,2, … , 𝐾}
• Observes reward 𝑋𝑡∼𝑃𝐴𝑡

Assume 𝑃𝑗 is supported on [0,1] 
24

𝜇1 𝜇2 𝜇𝐾……

Items, products, movies, companies, …

CTR, preference value, …

Click information, satisfaction, …



Objective

• Maximize the expected cumulative reward in 𝑇 rounds

𝔼 
𝑡=1

𝑇

𝑋𝑡 = 𝔼 
𝑡=1

𝑇

𝜇𝐴𝑡

• Minimize the regret in 𝑇 rounds 
• Denote 𝑗∗ ∈ argmax𝑗 𝜇𝑗 as the best arm

𝑅𝑒𝑔 𝑇 = 𝑇 ∙ 𝜇𝑗∗ − 𝔼 
𝑡=1

𝑇

𝜇𝐴𝑡

25



Explore-then-commit (ETC) [Garivier et al., 2016] 

• There are 𝐾 = 2 arms (choices/plans/...) 

• Suppose
• 𝜇1 > 𝜇2
• ∆ = 𝜇1 − 𝜇2

• Explore-then-commit (ETC) algorithm
• Select each arm ℎ times

• Find the empirically best arm A

• Choose 𝐴𝑡 = 𝐴 for all remaining rounds 

ℎ rounds 
for 𝑎1

ℎ rounds 
for 𝑎2

𝑇 − 2ℎ rounds 
for the better 

performed one

26

A/B testing



• Regret analysis:

𝑅𝑒𝑔 𝑇 = 𝑇 ∙ 𝜇1 − 𝔼 
𝑡=1

𝑇

𝜇𝐴𝑡

= ℎ∆ + 𝑇 − 2ℎ ∙ ∆ ∙ ℙ Ƹ𝜇1 < Ƹ𝜇2
= ℎ∆ + 𝑇 − 2ℎ ∙ ∆ ∙ ℙ Ƹ𝜇2 − 𝜇2 − ( Ƹ𝜇1−𝜇1) > ∆

≤ ℎ∆ + 𝑇 ∙ ∆ ∙ exp −
ℎ∆2

4

≤ 𝑂
log𝑇

∆

• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 100
• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 𝑇/10

Explore-then-commit (cont.)
ℎ rounds 

for 𝑎1

ℎ rounds 
for 𝑎2

𝑇 − 2ℎ rounds 
for the better 

performed one

Exploration Exploitation

27

Choose ℎ =
4

∆2
log

𝑇∆2

4

Sample mean

Hoeffding’s inequality

require the knowledge of ∆
Only with the best choice of ℎ
the regret would be smallest



Upper confidence bound (UCB) [Auer et al., 2002] 

• With high probability ≥ 1 − 𝛿

𝜇𝑗 ∈ Ƹ𝜇𝑗 −
log 1/𝛿

𝑇𝑗
, Ƹ𝜇𝑗 +

log 1/𝛿

𝑇𝑗

• Optimism: Believe arms have higher rewards, encourage exploration
• The UCB value represents the reward estimates

• For each round 𝑡, select the arm

𝐴 𝑡 ∈ argmax𝑗∈ 𝐾 ො𝜇𝑗 +
log 1/𝛿

𝑇𝑗(𝑡)

• Regret 𝑂 𝐾log 𝑇/∆ 28Exploitation Exploration

By Hoeffding’s inequality

Number of selections of 𝑎𝑗

Upper confidence bound (UCB) 

Sample mean

Without knowing ∆



Improve ETC: Elimination [Audibert and Bubeck, 2010] 

• Use confidence bound idea to remove requirement of ∆ in ETC

• Recall that with high probability ≥ 1 − 𝛿

𝜇𝑗 ∈ Ƹ𝜇𝑗 −
log 1/𝛿

𝑇𝑗
, Ƹ𝜇𝑗 +

log 1/𝛿

𝑇𝑗

• Once LCB1 > UCB2 (disjoint confidence intervals)

• Believes arm 𝑎1 has higher rewards

• Uniformly select all active arms

• Once an arm is determined to be sub-optimal (its UCB is smaller than 
someone’ LCB values)
• Delete it from the active set

• Regret 𝑂 𝐾log 𝑇/∆ 𝑎1𝑎2 𝑎1𝑎2 𝑎1𝑎2𝑎1𝑎2

LCB1 > UCB2

𝑎1 29

Arm 𝑎1 Arm 𝑎2

LCB1

UCB1

LCB2

UCB2



Bandit learning in matching markets [Liu et al., 2020]

• 𝑁 players: 𝒩 = {𝑝1, 𝑝2, … , 𝑝𝑁}

• 𝐾 arms: 𝒦 = {𝑎1, 𝑎2, … , 𝑎𝐾}

• 𝑁 ≤ 𝐾 to ensure players can be matched

• 𝜇𝑖,𝑗 > 0: (unknown) preference of player 𝑝𝑖 towards arm 𝑎𝑗
• For each player 𝑝𝑖

• {𝜇𝑖,𝑗}𝑗∈[𝐾] forms its preference ranking

• For simplicity, the preference values of any player are distinct

• For each round 𝑡:
• Player 𝑝𝑖 selects arm 𝐴𝑖(𝑡)
• If 𝑝𝑖  is accepted by 𝐴𝑖(𝑡): receive 𝑋𝑖,𝐴𝑖 𝑡 𝑡 with

𝔼 𝑋𝑖,𝐴𝑖(𝑡) 𝑡 = 𝜇𝑖,𝐴𝑖(𝑡)
• If 𝑝𝑖  is rejected: receive 𝑋𝑖,𝐴𝑖(𝑡)(𝑡) = 0 

Satisfaction over this matching experience

30

For simplicity, 
assume arms 
know their 
preferences

𝑝1

𝑝2

𝑝3

𝑎1

𝑎2

𝑎3

?

?

?

When would 𝑝𝑖 be rejected? 



Conflict resolution

• Each arm 𝑎𝑗 has a preference ranking 𝜋𝑗

• 𝜋𝑗(𝑝𝑖): the position of 𝑝𝑖 in the preference ranking of 𝑎𝑗

• 𝜋𝑗 𝑝𝑖 < 𝜋𝑗 𝑝𝑖′ : 𝑎𝑗 prefers 𝑝𝑖 than 𝑝𝑖′

• At each round 𝑡, when multiple players select arm 𝑎𝑗

• 𝑎𝑗 only accepts the most preferred one 𝑝𝑖 ∈ argmin𝑝
𝑖′
:𝐴
𝑖′
𝑡 =𝑎𝑗𝜋𝑗 𝑝𝑖′

and rejects others

31



Objective

• Minimize the stable regret
• The player-optimal stable matching 

ഥ𝑚 = 𝑖, ഥ𝑚𝑖 : 𝑖 ∈ 𝑁

• The player-optimal stable regret of player 𝑝𝑖 is

𝑅𝑒𝑔𝑖 𝑇 = 𝑇𝜇𝑖, ഥ𝑚𝑖
− 𝔼 

𝑡=1

𝑇

𝑋𝑖,𝐴𝑖 𝑡 (𝑡)

• The player-pessimal stable regret 𝑅𝑒𝑔𝑖 𝑇

• Use the objective of the player-pessimal stable matching 𝑚

• Guarantee strategy-proofness
• Single player can not achieve 𝑂(𝑇) reward increase by deviating when others follow 

the algorithm 32



Challenge in matching markets

• Learning process: Other players will block observations
• Once the player selects an arm based on its exploration-exploitation (EE) 

strategy, this arm may reject the player due to others’ selections

• The individual player’s EE trade-off is interrupted

• Objective: Cannot maximize a single player’s utility
• Aim to find the optimal equilibrium of the market

33

𝑝𝑖

𝑝𝑖′

𝑎𝑗
?

?

𝑝𝑖′ > 𝑝𝑖

Round 𝑡

Observation on 
𝑎𝑗 is blocked



Summary of Part 2: Multi-armed bandits

• Multi-armed bandits (MAB)
• Applications

• Explore-then-commit (ETC)

• Upper confidence bound (UCB)

• Successive elimination

• Lower bound

• Bandit learning in matching markets
• Setting

• Challenge

34



Part 3: Bandit Algorithms in Matching 
Markets 

35



Outline

36

• Centralized algorithms
• ETC, UCB

• The failure of UCB

• Decentralized algorithms
• General markets

• Markets with unique stable matching

• Explore-then-GS (ETGS) strategies

• Lower bound

• Other variants



Warm up: Centralized ETC [Liu et al., 2020]

37

• Input: An exploration budget ℎ

• For round 𝑡 = 1,2, … ,
• 𝑡 < ℎ𝐾: 

• 𝐴𝑖 𝑡 = 𝑎 𝑡+𝑖 mod 𝐾 //No conflict
• Update the corresponding rewards

• 𝑡 = ℎ𝐾: 
• Receive the estimated rankings ො𝜌𝑖
• Using GS to compute the matching 𝑚 ≔ (𝑚𝑖)𝑖∈[𝑁] based on ( ො𝜌𝑖)𝑖∈[𝑁]
• 𝐴𝑖 𝑡 = 𝑚𝑖

• 𝑡 > ℎ𝐾

• 𝐴𝑖 𝑡 = 𝑚𝑖

ℎ𝐾 rounds: explore 
all arms in a round-
robin manner 

Remaining rounds: 
Follow GS’s choice

𝑡 = ℎ𝐾Exploration Exploitation

GS with 
estimated 
ranking



Centralized ETC: Analysis

38

• If any player can estimate their preference ranking accurately

• Then the GS algorithm can output the player-optimal stable matching 

• Define ∆𝑖,𝑗,𝑗′= 𝜇𝑖,𝑗 − 𝜇𝑖,𝑗′

• Further define ∆= min𝑖,𝑗≠𝑗′∆𝑖,𝑗,𝑗′

• By choosing ℎ =
4

∆2
log 1 +

𝑇𝑁∆2

4
, all players can estimate their ranking well w.h.p.

• The player-optimal stable regret satisfies

𝑅𝑒𝑔𝑖 𝑇 = 𝑂 ℎ𝐾 = 𝑂
𝐾log 𝑇

∆2

Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 

Needs to know ∆

Larger than 0 due to distinct preferences



Centralized UCB [Liu et al., 2020]

• For round 𝑡 = 1,2, … ,
• Each player estimates a UCB ranking towards all arms 

• The GS platform returns an assignment 𝑚𝑡 under these UCB 
rankings

• Each player selects the assigned arm

39



Centralized UCB: Analysis

• When is 𝑚𝑡 unstable? 
• Exists blocking pair (𝑝𝑖 , 𝑎𝑗), 𝑝𝑖 is actually matched with 𝑎𝑗′

• What causes this blocking pair to appear? 

• 𝑝𝑖 wrongly estimate UCB rankings: UCB𝑖,𝑗 < UCB𝑖,𝑗′

• This scenario happens at most 𝑂(log 𝑇/∆2) times

• Converge to the player-pessimal stable matching

𝑅𝑒𝑔𝑖 𝑇 = 𝑂
𝑁𝐾log 𝑇

∆2

40

𝑝𝑖′

𝑎𝑗′

𝑎𝑗

𝑎𝑗 > 𝑎𝑗′

𝑝𝑖

𝑝𝑖 > 𝑝𝑖′

Do not require ∆, but can only 
achieve pessimal stable matching



Unique stable matching

• When there is only one stable matching
• Player-optimal stable matching = Player-pessimal stable matching

• The blocking relationship becomes simpler

• Decentralized setting:

41

Regret type Regret bound Uniqueness condition References

Unique stable 
matching

𝑂
𝑁𝐾log𝑇

∆2

Serial dictatorship [Sankararaman et al., 2021]

𝛼-reducible condition [Maheshwari et al., 2022]

Uniqueness consistency
（The most general)

[Basu et al., 2021]

Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 



Why UCB fails to achieve player-optimality?

• When 𝑝3 lacks exploration on 𝑎1
with 𝑎1 > 𝑎3 > 𝑎2 on UCB, GS 
outputs the matching1

(𝑝1, 𝑎2), (𝑝2, 𝑎1), (𝑝3, 𝑎3)

• 𝑝3 fails to observe 𝑎1

• UCB vectors do not help on 
exploration here

• Not consistent with the principle 
of optimism in face of uncertainty

𝑝2

𝑝3

𝑎1

𝑎2

𝑎3

𝑎1 > 𝑎2 > 𝑎3

𝑎2 > 𝑎1 > 𝑎3

𝑎1 > 𝑎3 > 𝑎2

𝑝2 > 𝑝3 > 𝑝1

𝑝1 > 𝑝2 > 𝑝3

𝑝3 > 𝑝1 > 𝑝2

𝑝1

1. When 𝑝1 and 𝑝2 submit the correct rankings
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• Exploration-Exploitation trade-off
• Exploitation goes though with correct rankings by following GS

• Require enough exploration to estimate the correct rankings

• The UCB ranking does not guarantee enough exploration

• Perhaps design manually?

• To avoid other players’ block: Coordinate selections in a round-robin way

43

How to balance EE in a more appropriate way?



• Avoid unnecessary exploitation before estimating preferences well
• Only when all players estimate well, enter GS + exploit

44

Explore-then-GS (ETGS) [Kong and Li, 2023]

phase 1 phase 2 phase ℓ

….

T rounds

Phase length grows exponentially

Round-robin explore: 2ℓ Communicate: 𝑂(1) GS + 
exploit

Communicate and 
find that all players 
estimate their 
preferences well



ETGS implementation: Communication

• At communication block: players determine whether all 
players estimate their preference rankings well

• For 𝑝𝑖
• If there exists a ranking 𝜌𝑖 over arms such that

• The confidence intervals of all arms are disjoint

• Note: this estimated ranking is accurate w.h.p.

• How to communicate with others?

45
Remark: each player identifying the arms ranked in the first N+1 is enough to find the player-optimal stable matching.

Arm 𝑎1 Arm 𝑎2

LCB1

UCB1

LCB2

UCB2

player 𝑝𝑖
′𝑠 preference values

Arm 𝑎3

LCB3

UCB3



ETGS implementation: Communication (cont.)

• Based on observed all players’ matching outcomes [KL, 2023]

• If 𝑝𝑖 has estimated well with ranking 𝜌𝑖: select arm 𝑎𝑖
• Else: Select nothing

At the communication round, if 𝑝𝑖 observes 
that all players have been matched: 

Then all players estimate their preference well
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Communication 
round

𝑝1

𝑝2

Player

𝑎1

𝑎2

Select

Estimate well

Select

Estimate well



ETGS implementation: Communication (cont.)

• Based on players’ own matching outcomes [Zhang et al., 2022]
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• Communicate based on every pair of players

• 𝑝𝑖 can transmit information {0,1} to 𝑝𝑖′ based on 𝑎𝑗 (𝑝𝑖> 𝑝𝑖′)

• In the corresponding round, 𝑝𝑖′ always selects 𝑎𝑗
• If 𝑝𝑖 finished exploration, selects 𝑎𝑗

• 𝑝𝑖′ is rejected, receives information 1

• Otherwise, 𝑝𝑖 do not select 𝑎𝑗
• 𝑝𝑖′ is accepted, receive information 0

• If a player cannot receive others’ information (all arms prefer this 
player than others)

• The player can directly exploit the stable arm

• Others cannot block it

Communication 
round

𝑝1

𝑝2

Player

𝑎1
Select

Estimate well

Rejection means 
𝑝1 estimated well

Always
select



ETGS: Regret analysis [Kong and Li, 2023]

• Exploration is enough ⟹ Estimated ranking is correct ⟹ All players enter 
the GS + exploit phase and find the player-optimal stable matching

• The player-optimal regret comes from exploration and communication

𝑅𝑒𝑔𝑖 𝑇 = 𝑂
𝐾log 𝑇

∆2
+ log

𝐾log 𝑇

∆2

• What is the optimal regret that an algorithm can achieve? 
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Remark: ∆ can be improved as the minimum gap between the first N+1 ranked arms among all players. 



Lower bound [Sankararaman et al., 2021]

• Optimally stable bandits
• All arms have the same preferences

• ⟹ Unique stable matching exists

• The stable arm of each player is its optimal arm

• For any player 𝑝𝑖
• Its stable arm is 𝑎𝑖
• 𝑎𝑖 prefers 𝑝1, 𝑝2……𝑝𝑖−1 than 𝑝𝑖
• 𝑇𝑖,𝑗: the number of times that 𝑝𝑖 selects 𝑎𝑗

𝑅𝑒𝑔𝑖 𝑇 ≥ max ∆𝑖,𝑖,𝑗
𝑗≠𝑖

𝑇𝑖,𝑗 , ∆𝑖,min
𝑖′<𝑖

𝑇𝑖′,𝑖
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The optimal arm 𝑎𝑖 is occupied by a higher-priority player𝑝𝑖 selects sub-optimal arm 𝑎𝑗

The minimum regret that 𝑝𝑖 may suffer at any round

𝑝1

𝑝2

𝑝3

𝑎1

𝑎2

𝑎3

𝑎2 > 𝑎1 > 𝑎3

𝑎3 > 𝑎1 > 𝑎2

𝑎1 > 𝑎2 > 𝑎3 𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3



Lower bound (cont.) 

• How many times does 𝑝𝑖 select a sub-optimal arm 𝑎𝑗 ?
• To distinguish the sub-optimal arm 𝑎𝑗 from the optimal arm 𝑎𝑖
• 𝑝𝑖  needs to observe this arm

Ω
log 𝑇

∆𝑖,𝑖,𝑗
2 times

• 𝐾 sub-optimal arms cause regret

Ω 
𝑗≠𝑖

log 𝑇

∆𝑖,𝑖,𝑗
2 ∙ ∆𝑖,𝑖,𝑗 = Ω

𝐾log 𝑇

∆

50

𝑝1

𝑝2

𝑝3

𝑎1

𝑎2

𝑎3

𝑎2 > 𝑎1 > 𝑎3

𝑎3 > 𝑎1 > 𝑎2

𝑎1 > 𝑎2 > 𝑎3 𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3



Lower bound (cont.) 

• How many times does 𝑎𝑖 is occupied by a higher-priority player 𝑝𝑖′?
• To distinguish the sub-optimal arm 𝑎𝑖 from the optimal arm 𝑎𝑖′

• 𝑝𝑖′  needs to observe this arm

Ω
log 𝑇

∆𝑖′,𝑖′,𝑖
2 times

• 𝑁 higher-priority players cause regret

Ω 
𝑖′<𝑖

log 𝑇

∆𝑖′,𝑖′,𝑖
2 ∙ ∆𝑖,min = Ω

𝑁log 𝑇

∆2

• The stable regret satisfies

𝑅𝑒𝑔𝑖 𝑇 ≥ Ω max ቊ
𝑁log 𝑇

∆2
, ቋ
𝐾log 𝑇

∆

51
Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 

𝑝1

𝑝2

𝑝3

𝑎1

𝑎2

𝑎3

𝑎2 > 𝑎1 > 𝑎3

𝑎3 > 𝑎1 > 𝑎2

𝑎1 > 𝑎2 > 𝑎3 𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3

𝑝1 > 𝑝2 > 𝑝3



Can we close the 𝑁 and 𝐾 gap?

• ETGS: 𝑂
𝐾log 𝑇

∆2

• Lower bound: Ω
𝑁log 𝑇

∆2
+

𝐾log 𝑇

∆

• Suboptimality: Needs to identify the full ranking among 𝐾 arms

• Key observation: 
N players at most occupy N arms

52

𝑝𝑖

Uniformly explore 𝐾 arms

Until the full ranking

has been identified
> > >……

Stop explore!



Can we close the 𝑁 and 𝐾 gap? (cont.)

• Offline GS + Temporary Elimination

• Independent exploitation

53

NeurIPS 2024

No dependence on 𝐾 in the main term



Other setting variants

• Many-to-one matching markets

• Strategic behaviors

• Contextual information and indifferent preferences

• Non-stationary preferences 

• Two-sided/multi-sided unknown preferences

• Markov matching markets 

• Multi-sided matching markets

54



Summary of Part 3: Bandit algorithms in 
matching markets 
• Centralized algorithms

• ETC, UCB

• The failure of UCB

• Decentralized algorithms
• General markets

• Markets with unique stable matching

• Explore-then-GS (ETGS) strategies

• Lower bound

• SOTA result

• Other variants
55



Thanks!
&

Questions? 

56Credit: Some images are from Flaticon.com
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